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The Stokes flow occurring within a non-neutrally buoyant spherical droplet translating
by buoyancy through an immiscible liquid which is undergoing simple shear is
shown to be chaotic under many circumstances for which the droplet translates by
buoyancy through the entraining fluid. This flow is easily produced, for example,
when the droplet rises (or falls) through the annular space of a vertical concentric-
cylinder Couette viscometer or through a vertical Poiseuille flow. The parameters
studied include: (i) droplet/bulk fluid viscosity ratio; (ii) shear strength/bubble rise
velocity ratio; and (iii) the angle between the translational bubble velocity vector
and the vorticity vector characterizing the undisturbed shear. Streamlines existing
within a droplet that translates perpendicular to this vorticity vector are shown to
be non-chaotic for all choices of physical parameters. Other relative orientations
frequently contain chaotic trajectories. When solute initially dissolved within the
droplet is extracted into the bulk fluid, the resulting overall mass-transfer coefficient
(calculated via generalized Taylor dispersion theory) quantifying the extraction rate at
asymptotically long times is shown to be significantly higher in the chaotic flow case.

1. Introduction
Much of the existing literature concerned with laminar chaos focuses on the local

mixing properties of such flows (see Ottino 1990 for a review) and utilizes qualitative
measures of the extent of chaotic motion, accompanied by visualization of the regions
exhibiting chaotic behaviour in the form of Poincaré sections. Less common have
been quantitative studies of the degree of global enhancement of the heat- and
mass-transfer rates engendered by such chaotic laminar flows. Jana & Ottino (1992)
studied heat transfer in a chaotic cavity flow. They considered the approach to
equilibrium of an initially isothermal fluid that is perturbed by a step change in the
wall temperature. Significant enhancement was found in the rate of heat transfer
for circumstances in which chaotic transport was present. The net heat transfer rate
displayed a strong dependence on the Péclet number (Pe), exhibiting a maximum
at intermediate values of Pe. Ghosh, Chang & Sen (1992) investigated heat transfer
in the annular space between rotating eccentric cylinders when the cylinders were
maintained at a different temperatures. Although their work was limited to both
small eccentricities and small oscillations superposed on an otherwise steady rotary
flow – conditions under which chaotic transport would be expected to be small – they
nevertheless found a significant increase in heat transfer occurring in circumstances
where chaotic transport was present. Toussaint, Carrière & Raynal (1995) studied
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the rate of decay of an initially inhomogeneous scalar field in the presence of both
chaotic and non-chaotic flows, demonstrating that the rate of decay to homogeneity
was greater in the chaotic flow case.

Recently, Bryden & Brenner (1996) studied reaction and dispersion in time-periodic
eccentric annular flow. They calculated the rate of disappearance of a solute which
undergoes an instantaneous, irreversible chemical reaction on the surface of one of the
alternately rotating cylinders, and found that the presence of chaotic laminar motion
increases the effective reaction rate quantifying the resulting first-order macroscale
kinetics beyond that occurring for comparable non-chaotic convection configurations.
In addition, the presence of laminar chaos was shown to cause the effective axial
solute/solvent velocity ratio to approach the perfectly-mixed value of unity in contrast
with the corresponding non-chaotic annular flow case. The improved transverse
mixing resulting from the chaotic motion also reduced the axial Taylor dispersivity
dramatically.

Many other practical applications of laminar chaos in transport processes remain
to be investigated. This paper addresses one such application, namely the extraction
of a solute from a non-neutrally-buoyant dispersed phase into an entraining bulk fluid
undergoing shear. Chaotic flows within spherical drops have been studied by Bajer &
Moffatt (1990) as well as by Stone, Nadim & Strogatz (1991), the former considering
a general quadratic flow within a sphere and the later studying the behaviour of
the streamlines immersed within a general linear flow. Another three-dimensional
confined flow exhibiting chaotic behaviour is the time-dependent spherical Couette
flow considered by Cartwright, Feingold & Piro (1996). The work of Stone et al.
(1991) is the most relevant in the context of our work. They demonstrated that the
particle paths within a drop immersed in a general linear Stokes flow may wander
chaotically, with the extent of chaotic motion depending upon the orientation of the
vorticity vector relative to the principal axes of strain of the shear flow as well as
upon the relative magnitudes of the vorticity and shear rate. However, they did not
consider circumstances in which the drop translates relative to the bulk fluid, which
their preliminary results suggested exhibited behaviour similar to that observed for
their stationary drop case. In addition, they noted that the pathlines arising for the
simple shear flow case are non-chaotic.

In the present contribution we focus on the superposition of the two above-
mentioned flows, whereby a spherical drop translates through a simple shear flow.
In combination, these elementary flows display chaotic behaviour. The structure
of the resulting Poincaré sections differs appreciably from those observed in the
flows considered by Stone et al. (1991). Potential fundamental and practical interest
centres on the flows considered herein, owing to the ease with which they can
be realized experimentally, in addition to their applicability to common chemical
engineering processes such as liquid–liquid extraction. Poincaré sections for these
flows are presented in §3 and the parameter range established for which chaotic
flows occur. Section 4 presents the values of the overall mass-transfer coefficient,
both for circumstances in which the flow internal to the drop is chaotic as well
as when it is non-chaotic, thereby providing a quantitative global measure of the
chaotically-enhanced improvement in extraction rate.

2. The flow field internal to the drop
The circumstance to be considered is that of a spherical droplet translating by

buoyancy through a fluid undergoing a simple shear flow. Different angles α between
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the direction of the vorticity vector ω of the undisturbed shear flow and the direction
of the gravity vector g will be investigated, with particular attention paid to the
limiting cases in which ω is either parallel (α = 0) or perpendicular (α = 1

2
π) to

gravity. Each of these configurations is easily produced: the former results from
allowing the bubble to rise or fall through the annular space between two vertical
concentric cylinders, wherein a Couette flow is maintained by their relative rotation;
the latter results when a bubble rises or falls within a Poiseuille flow occurring in a
vertical tube. (For definiteness in the subsequent analysis, the relative translational
motion of the droplet will always be described as if it were rising through the fluid, i.e.
moving opposite to the direction of gravity.) Intermediate angle flows (0 < α < 1

2
π) are

also easily realized by combining the circular Couette flow with an annular Poiseuille
flow. As will be seen later, the two limiting angles yield flows which display strikingly
different behaviour, with the α = 0 case containing large regions in which the particle
paths within the droplet are chaotic, whereas the α = 1

2
π case contains only periodic

pathlines. In circumstances where the externally-imposed flow is not strictly a linear
shear flow it may nevertheless be regarded as such in proximity to the droplet,
provided that the droplet radius a is small compared with both the characteristic
linear dimension of the apparatus in which the external flow is generated and the
distance of the droplet from the walls of this apparatus. The droplet will be assumed
to remain spherical, a condition which requires inter alia that the respective Reynolds
numbers based on translation and shear both be small compared to unity, and that
the interface be inviscid (i.e. devoid of any special interfacial rheological properties
(Edwards, Brenner & Wasan 1991) other than interfacial tension). Accordingly, in the
quasi-steady Stokes flow case the complete flow occurring within the droplet is simply
the linear superposition of the respective flows resulting from the bubble’s translation
through the quiescent fluid and from the external shear flow for the neutrally- buoyant
droplet case.

The internal flow created by the bubble’s translation is an axisymmetric Stokes
flow of the form (Hadamard 1911)

vT =
1

2a2(1 + σ)
U · [xx− (2r2 − a2)I ], (2.1)

in which σ = µi/µo is the droplet/external-fluid viscosity ratio, x is the position vector
measured from the centre of the drop, r2 = x · x, and

U =
2a2∆ρg

9µo

1 + σ
2
3

+ σ
ĝ (2.2)

is the bubble velocity, with ∆ρ the algebraically-signed droplet/external-fluid density
difference, g = |g| the acceleration due to gravity, ĝ ≡ g/g a unit vector parallel
to gravity, and a the droplet radius. Typical streamlines resulting from this flow are
plotted in figure 1.

A general external shear flow of the form v∞ = x ·G , with G ≡ ∇v∞ the undisturbed
velocity gradient, induces a fully three-dimensional flow within the droplet. The
internal flow field for a neutrally-buoyant droplet possessing an inviscid interface and
suspended within such a shear flow is given by Taylor (1932) as

vG =
1

4a2(1 + σ)
[(5r2 − 3a2)(G + G†) · x− 2xx · G · x] + 1

2
ω × x, (2.3)

with ω = ∇ × v∞ the vorticity vector. For the simple shear flow v∞ = i2Gx1, we
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U

Figure 1. Streamlines internal to a spherical droplet rising by buoyancy through a quiescent fluid.

(a) r = 0

(b) r = 0.5 (c) r = 1

Figure 2. Streamlines internal to a neutrally-buoyant droplet suspended within a simple shear flow
for various viscosity ratios. The streamlines shown are those lying in the meridian plane containing
the simple shearing flow. The remainder of the flow field is similar, but also contains a z-component:
vz = −xyzG/[2a2(1 + σ)].

have that G = i1i2G and ω = i3G, with (x1, x2, x3) a system of right-handed
rectangular Cartesian coordinates, (i1, i2, i3) the corresponding unit vectors, and G
the shear rate. Typical internal streamlines generated by this flow are shown in
figure 2. Note that as σ increases, the streamlines approach those for a solid-body
rotation. It will be shown later that no chaotic flow exists for these large values
of σ.
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(b) r = 0.5(a) r = 0

(c) r = 1

Figure 3. Poincaré sections for Ĝ = 1, α = 0, and the indicated viscosity ratios.

3. Chaotic trajectories within the drop: Poincaré sections
A qualitative description of the flow may be obtained through the use of Poincaré

sections. In the present case we integrate the equation

dx

dt
= v(x) (3.1)

governing the Lagrangian trajectories x ≡ x(x0, t) of the fluid particles, with v the
vector velocity field arising from the appropriate superposition of (2.1) and (2.3), and
x the position vector at time t of the particular fluid particle whose position vector
at time t = 0 was x0. Poincaré sections may then be obtained in an appropriately
chosen plane, in this case the meridian plane whose unit normal is ĝ. These plots are
similar to those obtained by Stone et al. (1991) for more general shear flows.

Three non-dimensional fluid-mechanical parameters arise in the present study: (i)
the ratio Ĝ ≡ aG/U, representing the strength of the shear field relative to the bubble
rise velocity U = |U |; (ii) the internal/external viscosity ratio σ; and (iii) the angle
α = cos−1(i3 · ĝ) (0 6 α 6 1

2
π) between the undisturbed vorticity vector and the

direction of gravity. (The orientation of the x1-coordinate is maintained such that
throughout this paper the angle cos−1(i1 · ĝ) = 1

2
π.)

Displayed in figure 3 are the Poincaré sections for Ĝ = 1, α = 0 (corresponding to
a bubble rising perpendicularily to the shear plane) and for varying viscosity ratios
σ. These plots were produced using a fourth-order Runga–Kutta method, with a step
size small enough that halving it produced the same structure in the Poincaré plots. In
most cases the time step was 1×10−4 to 1×10−5, the smaller step size being necessary
for the more chaotic flows. As is evident, the extent of the chaotic region decreases
with increasing σ. Indeed, as σ → ∞ the flow becomes completely non-chaotic, with
the flow internal to the droplet being simply a rigid-body rotation at angular velocity
ω/2

Figure 4 displays Poincaré sections for σ = 0, α = 0 and for several values of Ĝ. For
small shear rates, such as Ĝ = 0.1, the particle trajectories are largely quasi-periodic,
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(a) G = 0.1 (b) G = 0.5ˆ ˆ

Figure 4. Poincaré sections for σ = 0, α = 0, and the indicated shear strength ratios.

Figure 5. Typical trajectory of a particle with Ĝ = 0.1, σ = 0, and α = 0.

Figure 6. Poincaré section for σ = 0, α = π/4, and Ĝ = 1.

with particles traversing the surface of a torus (see figure 5). Although extremely
small chaotic regions may exist, they were not detectable in these maps and would
not be large enough to be of practical importance. Larger values of Ĝ result in
correspondingly larger regions of the flow containing chaotic trajectories.

Figure 6 depicts the Poincaré section resulting when Ĝ = 1, σ = 0, and α = 1
4
π.

This flow exhibits considerable chaotic behaviour, with one initial condition sampling
apparently all of the droplet. In contrast, for α = 1

2
π the resulting particle trajectories

differ qualitatively from those at other angles. Indeed, since the respective internal
flows generated by the translation and shear flows lie in the same plane, the resulting
particle trajectories are purely periodic.
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4. Effective mass-transfer coefficients
This section furnishes a calculation of the rate at which a passive solute, initially

dissolved in the droplet and absent from the bulk fluid, is transferred into the
latter. The resistance to interphase mass transfer will be assumed governed locally
by an external mass-transfer coefficient k which is independent of surface position.
(Our analytical and computational methods are equally applicable to circumstances in
which the mass-transfer coefficient k, rather than being constant, varies in a prescribed
manner over the surface of the droplet, e.g. Lochiel & Calderbank 1964; Baird &
Hamielec 1962.) Our goal is to determine the overall rate of interphase mass transfer
by investigating the internal convective and diffusive transport processes occurring
within the droplet. During the process the external fluid will be assumed to act simply
as an infinite reservoir for solute, and hence to remain permanently everywhere at
zero local solute concentration throughout the extraction process.

The instantaneous solute concentration c(x, t) within the droplet obeys the standard
convective–diffusive equation

∂c

∂t
+ v · ∇c− D∇2c = 0, (4.1)

subject to the respective initial and boundary conditions,

c = c0 at t = 0, (4.2)

D
∂c

∂r
= −kc at r = a, (4.3)

where c0 ≡ c(x, 0) is taken to be a constant. The results ultimately obtained for the
overall mass-transfer coefficient K defined in (4.4) are independent of this arbitrary
choice of initial solute distribution, the constancy of c0 being chosen merely for
convenience.

These equations were solved numerically using an alternating-direction finite-
difference method, and the overall mass-transfer coefficient subsequently calculated
as

K = − lim
t→∞

1

∆t
ln


∫
V

c(x, t+ ∆t)dV∫
V

c(x, t)dV

 , (4.4)

in which ∆t is an arbitrarily short time interval and V denotes the droplet domain.
This approach is equivalent to solving the generalized Taylor dispersion zeroth-order
local moment eigenvalue problem (Brenner & Edwards 1993). (See Edwards, Shapiro
& Brenner 1993 for a proof of this equivalence.) This asymptotic mass-transfer
coefficient provides a global measure of the effectiveness of the chaotic flow field
in enhancing the solute transport processes occurring within the droplet. It has the
advantage of being independent of initial conditions, and is comparable in nature
to the effective reaction-rate coefficient (Bryden & Brenner 1996) for circumstances
wherein the solute is depleted by a first-order irreversible chemical reaction (quantified
by a kinetic reaction-rate coefficient k) occurring at the interface. The global physical
significance of K lies in the fact that it appears as the coefficient of the exponential
decay term in the asymptotic relation

M(t) ∼Mfe
−Kt (4.5)

governing the mass M(t) =
∫
V
c(x, t)dV of solute remaining in the droplet at time t for
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times t satisfying the inequality t� a2/D, with Mf the fictitious mass of solute initially
present (Shapiro & Brenner 1987); that is, Mf 6= M(0), where M(0) =

∫
V
c(x, 0)dV ≡

c0V in present circumstances. Calculation of Mf is discussed in §5 (see table 1).

For a fixed Sherwood number Sh = ka/D, we parametrically explored the ef-
fects on K of varying the: (i) translational Péclet number (Pe = Ua/D); (ii) shear

strength/bubble rise velocity ratio Ĝ; (iii) relative orientation α of the shear and trans-
lational flows; and (iv) viscosity ratio σ. Typical Péclet numbers for liquid droplets
of diameters 0.1 to 10 mm are of order 105 to 1010 for hydrocarbon-aqueous systems.
Such extremely high Péclet numbers can cause numerical instabilities in the requisite
calculations. However, it proved unnecessary to carry out calculations at very large
Péclet numbers, since clearly defined trends became evident at much smaller values.
Indeed, for many sets of parameters, especially those which give rise to significant
regions of regular motions, an asymptotic limit was already achieved at values of
Pe ≈ 100. Asymptotic limits were also observed at large Sherwood numbers.

All the calculations reported here employed a value of Sh = 100, just slightly below
the asymptotic limit at which the interphase transport rate becomes independent of
k. Thus, the results reported herein furnish an approximation to the case wherein
the external mass-transfer coefficient becomes infinite, that is, when the boundary
condition (4.3) is replaced by the condition c = 0 at r = a. Interest in the latter
boundary condition arises from the fact that, all other things being equal, chaotic
mixing effects within the drop are expected to maximally enhance the rate of solute
transport into the entraining fluid for circumstances in which the external mass-
transfer coefficient k appearing in (4.3) is infinite; for then, solute transport within
the droplet interior constitutes the rate-limiting mechanism controlling the interphase
transfer rate. Hence, the k = ∞ case represents the most interesting case for studying
transport enhancement by chaotic advection.

Unfortunately, the c = 0 at r = a boundary condition leads to numerical instabilities
at large Péclet numbers, the case of interest in applications. Thus, rather than treat this
case directly, we did so indirectly by studying the case of large, but finite, Sherwood
numbers. This was done by initially parametrically exploring the non-dimensional
interphase transport rate Ka2/D as a function of the Sherwood number until the
latter was sufficiently large for the interphase transport rate to be almost maximized,
all other things being equal. Investigation revealed that this asymptotic state was
approximately achieved at Sh = 100, whence we fastened upon this particular value
for all of our calculations. This choice allowed us to bring our computations to
fruition in a reasonable amount of computer time, even for asymptotically large
Péclet numbers.

Figure 7 displays the effective mass-transfer coefficient K as a function of Pe for
α = 0, σ = 0, and for various values of Ĝ. With the exception of the Ĝ = 0.1 case,
each of these flows possesses chaotic regions (see figures 3(a) and 4). Also shown are
the mass-transfer coefficients obtained when only one of the two basic flows, shear or
translation, is present. For small Péclet numbers the extraction rate approaches that
occurring in the absence of flow, namely the smallest root of tan λ = λ/(1− Sh), with
λ = Ka2/D|Pe=0 (approximately 9.67 for the present value of Sh = 100). From these
results, it is clear that those flows which are chaotic, (cf. figures 3a and 4b), result
in the largest extraction rates, whereas the quasi-periodic case (Ĝ = 0.1) is nearly
indistinguishable from the case of pure translational motion. The extraction rate
induced by the shear flow alone is scarcely larger than that for the purely diffusive
case. The latter behaviour is expected, since many of the streamlines for this case
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Figure 7. Effective mass-transfer coefficient as a function of Péclet number for α = 0, σ = 0,

Sh = 100, and various values of Ĝ. The value Ĝ = ∞ corresponds to the case of no translation
of the droplet. (In this case the value appearing on the abscissa is the shear Péclet number,

PeG = a2Ĝ/D. For a given PeG the strength of the shear field is identical to that present for

Pe = PeG and Ĝ = 1.)
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Figure 8. Effective mass-transfer coefficient as a function of Péclet number for α = 0, Sh = 100,

and (a) Ĝ = 1, σ = 0; (b) Ĝ = 1, σ = 0.5; (c) Ĝ = 1, σ = 1; (d) Ĝ = 0, σ = 0.

resemble those for solid-body rotation; and a purely rotary internal flow contributes
nothing to the transport of solute towards the droplet surface. From a comparison of
figures 3(a) and 4(b) it is not obvious which of the two flows, Ĝ = 0.5 or Ĝ = 1, is the
more chaotic in nature, since each Poincaré section contains several regular islands.
In contrast with such purely qualitative attempts to distinguish the more chaotically
effective of these two flows, the quantitative rate results of figure 7 clearly distinguish
between them.

The influence of the viscosity ratio σ on mass transfer is illustrated in figure 8.
Again, it is seen that those flows which appear visually to be most chaotic are also
those that result in the largest mass-transfer rates.

Figure 9 furnishes the effective extraction rate as a function of Pe (with σ = 0 and
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Figure 9. Effective mass-transfer coefficient as a function of Péclet number for σ = 0, Sh = 100,

and (a) Ĝ = 1, α = 0; (b) Ĝ = 1, α = π/4; (c) Ĝ = 1, α = π/2; (d) Ĝ = 0; (e) no translation

(Ĝ→∞).

Ĝ = 1) for three possible relative orientations α of the directions of gravity and shear,
namely (i) α = 0 (translational motion parallel to the vorticity vector); (ii) α = 1

2
π

(translational motion perpendicular to the vorticity vector); (iii) α = 1
4
π. As noted

earlier, when α = 1
2
π the trajectories are periodic, whereas in the remaining cases they

are largely chaotic. It is clear that the chaotic flows again result in greater extraction
rates than those for comparable non-chaotic flows. Indeed, the effective mass-transfer
coefficient for the α = 1

2
π case is even less than that occurring in the absence of shear!

This result is a consequence of the streamline pattern for this flow. Superposition
of translation and shear lying in the same plane results in the disappearance of
streamlines that circulate from the centre of the droplet towards the exterior, despite
their presence in the case of pure translation. Rather, the streamlines are now closer
in configuration to concentric circles, thus contributing little to the extraction rate.
Finally, the mass-transfer coefficient is seen to be greater for α = 0 than for α = 1

4
π

despite the apparently larger extent of chaos visible in the latter case. Thus, while the
presence of chaos in these flows enhances the mass-transfer rates relative to those for
comparable non-chaotic flows, the extent of the chaos does not always provide an
accurate qualitative correlation of the global rate of transport.

5. Discussion
Although only bubbles with inviscid interfaces have been considered, the results

obtained herein may nonetheless be applied to circumstances in which the interface is
viscous (i.e. possesses its own intrinsic Newtonian interfacial rheological properties),
provided that appropriate changes are made in the respective denominators of (2.1)
and (2.3), as well as in the magnitude U of the translational velocity. This is a
consequence of the fact that the configuration of the streamlines arising from the
bubble’s translational motion is unaffected by the existence of interfacial viscosity;
only the magnitude of U is influenced by the interfacial rheology (Edwards et al.
1991). Thus, the velocity field resulting from translational motion occurring in the
presence of interfacial rheology is identical to that for an inviscid bubble, with the
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σ Ĝ α Ka2/D Mf/M(0)

0 0 0 24.4 0.83
0 ∞ 0 12.0 0.60
0 0.1 0 23.5 0.83
0 0.5 0 29.4 0.84
0 1 0 40.6 1.14
0.5 1 0 30.5 0.95
1 1 0 26.5 0.93
0 1 1

4
π 36.7 1.22

0 1 1
2
π 15.8 0.54

Table 1. Effective mass-transfer coefficient Ka2/D and fictitious/true initial solute mass ratio
Mf/M(0) for the uniform initial solute concentration case, with Pe = 200, Sh = 100, and the
parametric trio sets cited herein.

quantity σ + κs/aµo (in which κs is the surface dilatational viscosity) appearing in
place of the viscosity ratio σ in (2.1) and (2.2). Similarly, for small Reynolds and
capillary numbers, interfacial rheology affects the droplet velocity field created by the
external shear flow only through the denominator appearing on the right-hand side of

(2.3) (Edwards et al. 1991), in which σ is then replaced by σ̂
def
= σ+(5µoa)

−1(4µs+6κs),
with µs the surface shear viscosity. Furthermore, the value of σ̂ varies over the range 0
to ∞ for both viscous and inviscid interfaces. Hence, by means of appropriate scaling,
the results found here may also be applied to circumstances in which the interface is
viscous.

In order to use (4.5) to predict the amount of solute remaining within the droplet
at a given time t after the experiment commences, it is necessary to calculate the
fictitious amount of solute Mf initially present in the droplet at t = 0 (Brenner &
Edwards 1993). Use of a fictitious initial value in place of the true value corrects
for those transport processes occurring prior to the time t = O(a2/D) at which the
present global asymptotic description embodied in (4.5) becomes valid. Calculation
of Mf requires determining the solution A(x) of the steady-state differential equation

v · ∇A+ D∇2A+KA = 0, (5.1)

subject to the respective boundary and normalization conditions

D
∂A

∂r
= −kA at r = a, (5.2)∫
V

P∞0 AdV = 1, (5.3)

in which

P∞0 (x) = lim
t→∞

{
c(x, t)

/∫
V

c(x, t)dV

}
(5.4)

represents the long-time ‘non-reactive’ zeroth-order local moment (Brenner & Ed-
wards 1993). For a specified true initial solute concentration c(x, 0), the fictitious mass
Mf of solute initially present in the droplet is then found through the quadrature

Mf =

∫
V

c(x, 0)A(x)dV . (5.5)
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For Pe = 200, table 1 displays the ratio of fictitious to true initial solute masses,
Mf/M(0), where M(0) ≡ c0V is the true mass of solute initially present in the drop
for the case described by (4.1) to (4.3). Equivalently, if we define a fictitious (uniform)
initial solute concentration cf as cf = Mf/V , then Mf/M(0) ≡ cf/c0 represents the
ratio of fictitious to true initial homogeneous solute concentration in the droplet.

The problem of extracting a solute from a translating droplet was addressed by
Kronig & Brink (1949). They found an approximate solution for asymptotically
large Péclet and Sherwood numbers. The asymptotic global extraction-rate coefficient
Ka2/D = 24.4 furnished by our calculations in the absence of shear (cf. table 1)
agrees quite well with the limiting value of 26.85 found by Kronig & Brink (1949)
for the infinite Sherwood number case, the slight difference presumably being due to
the difference in Sherwood numbers. However, our fictitious/true initial mass ratio of
Mf/M(0) = 0.83 is larger than the value of 0.65 quoted by Kronig & Brink (1949).
Our calculations showed that this ratio approaches its limiting asymptotic value at
much larger values of both Pe and Sh than does K . Additional calculations performed
with Sh = 500 and Sh = 800 (in place of Sh = 100) and Pe = 200 each provided
identical values of 25.8 and 0.69 for the respective values of Ka2/D and Mf/M(0),
whereas a calculation with Sh = 500 and Pe = 300 provided the respective values
of 26.1 and 0.66, suggesting the possibility of excellent agreement between these two
very different modes of calculation at Sh = ∞, Pe = ∞.

6. Conclusions
We have demonstrated that chaotic low Reynolds number flows can arise within a

spherical droplet by superposing translational and simple shear flows. Moreover, the
presence of chaotic streamlines is shown to significantly increase the rate of extraction
of a solute from the interior of the droplet into the bulk fluid, an observation of
potential practical importance in the design of mass-transfer devices.

The class of flows studied herein possesses the distinct advantage of being easily
realized with elementary equipment. Thus, unique opportunities exist for experimental
studies of these chaotic flows. In this context, tracer studies similar to those undertaken
for two-dimensional time-dependent chaotic flows (e.g. Swanson & Ottino 1990; Kusch
& Ottino 1992; Dutta & Chevray 1995; Saatdjian et al. 1996), and three-dimensional,
spatially periodic chaotic flows (e.g. Kusch & Ottino 1992), as well as solute extraction
experiments, would be expected to usefully supplement the present theoretical analysis.
Such realizations would hopefully demonstrate the practical applications of chaotic
flows towards improving industrial mass-transfer processes.

The occurrence of chaos in such elementary circumstances as those studied here
suggests that other simple, practically relevant, chaotic flows exist, and that they
merely await discovery and/or theoretical elucidation before being put to productive
use in industrial applications. Indeed, it appears that in many laminar flows, chaos
may be the rule rather than the exception.
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